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A numerical approximation scheme for the estimation of functional parameers in

Euler-Bernoulli models for the tansverse vibration of flexible beams with tip bodies is developed.

The method permits the identification of spatially varying flexural stiffness and Voigt-Kelvin

viscoelastic damping coefficients which appear in the hybrid system of ordinary and partial

differential equations and boundary conditions describing the dynamics of such structures. An

inverse problem is formulated as a least squares fit to data subject to constaints in the form of a

vector system of abstract first order evolution equations. Spline-based finite element

apprximations an used to finite dimensionalize the problem. Theoretical convergence results are

given and numerical studies carried out on both conventional (serial) and vector computers are

discussed.

NN



1. Intoucto

We develop here numerical approximation methods for the estimation of functional or more

precisely, spatially varying parameters that describe material properties in continuum models for

elastic structures. In particular, we consider the identification of the flexural stiffness and

Voigt-Kelvin viscoelastic damping coefficients in Euler-Bernoulli models for the transverse

vibration of long, slender, flexible beams with tip appendages. The primary motivation for the

study we report on here is the modeling and ultimately the control of the dynamics of large flexible

spacecraft. The type of structures to which we are referring includes satellites with flexible

appendages (solar panels and the like) antennas (reflectors as well as supporting structures) and

trussed masts and platforms, both shuttle attached and free flying.

The difficulties involved in the design of efficient and practical control laws and in particular the

need for extremely high fidelity models for structures of these types are well documented (see, for

example, [1], [8], [21], [22]). Their high flexibility, light damping, construction with new and

relatively untested composite materials (usually graphite-epoxy) and overall complexity together

with their use in a fuel limited and highly variable environment all contribute to making space

structure stabilization and control a formidable task. It is becoming increasingly clear that the use

of continuum or distributed models with spatially and / or temporally varying functional parameters

has the potential to offer several distinct and significant advantages. Included among them is the

ability to, in some sense, capture the physics and inherent infinite dimensionality of the dynamics

while at the same time greatly reducing the number of unknown or experimentally indeterminable

material parameters which have to be identified (see [15], [18], [23], [28], [35]).

In our study we have considered exclusively Voigt-Kelvin viscoelastic damping which is based

on the hypothesis that the damping moment is proportional to strain rate. There exists considerable

evidence to suggest that damping mechanisms in composite materials are significantly more

complex than the one described by the Voigt-Kelvin model. For example, it has been conjectured

by some investigators that an appropriate model might involve hysteretic or hereditary effects.

However, since there are a number of materials for which the Voigt-Kelvin assumption is

appropriate and moreover, since at present many questions regarding the modeling of structural
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damping mechanisms remain open, we feel that the Voigt-Kelvin model leads to a reasonable class

of examples and problems on which we can begin to develop, test, and evaluate identification

schemes.

Our treatment here is similar in spirit to some of our earlier efforts and the work of others on

inverse problems for elastic structures (see [2], [3], [4],[5], [6], [14], [17], [26], [31]).

Formulating the identification problem as a least squares fit to data, the scheme we develop

involves a spline based finite element approximation to the hybrid system of coupled ordinary and

partial differential equations describing the dynamics of the structure together with a spline based

discretization of the admissible parameter set.

Our approach here specifically differs from the one taken in [5], [6] in that the present scheme is

derived from an alternative state space formulation for the underlying dynamical equations. We

consider the higher order analog of the classical conservative formulation for a second order

hyperbolic equation as a first order vector system in the natural states of strain ux and velocity ut.

We have considered identification schemes based upon this formulation previously in [31].

However by replacing the semigroup theoretic convergence arguments used there with weak or

variational arguments (in the spirit of those commonly found in the finite element literature) as used

in [5], we are able to significantly weaken the hypotheses necessary to ensure convergence. We

point out below that the weakening of these hypotheses has both theoretical and computational

significance.

Along with reporting theoretical convergence results, we discuss numerical findings. Our

computational results are based upon extensive numerical studies which involved a variety of

examples and two machines. In addition to testing our scheme on a conventional serial computer

(an IBM 3081) we vectorized our codes for the Cray I-S and then benchmarked some of our runs

in order to explore the potential of vector architectures in the context of inverse problems for

systems described by distributed parameter models.

We provide a brief outline and summary of the remainder of the paper. In Section 2 we specify

the ordinary and partial differential equations which govern the underlying dynamics of the

structure and precisely formulate the identification problem. We reformulate the initial-boundary

value problem as an abstract second order evolution equation and then as a first order vector
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system. Existence, uniqueness and regularity results for solutions are summarized. Section 3

contains the abstract approximation theory and convergence results. A spline-based scheme is

discussed in detail in Section 4 and our numerical findings are reported and summarized in Section

5.

We use standard notation throughout. For X and Y Banach spaces, the Banach space of

continuous linear transformations from X into Y is denoted by Z (X,Y). When X = Y we use the

shorthand notation Z (X). The spaces of (equivalence classes of) functions f from an interval $

into X which satisfy

f If(e)i d0< - or esssup If(O)Ix<--

are denoted respectively by L2(d ; X) and L,(sJ ; X). For k = 0,1,2... the space of X-valued

functions with k continuous derivatives on 0 are denoted by Ck(d ; X). When k = 0 we use

C(d ; X). The completion of the space Ck(; X) with respect to the norm

k1

is denoted by Hk(d; X). When X = R we use simply L.2 (d), L.(d), Ck(d) and Hk(d).

2.Te I nf Problem

We consider the identification, or estimation, of the mass and/or material properties of a long,

slender, flexible, viscoelastic beam of length t and spatially varying mass density p which is

clamped at one end and free at the other with a body rigidly attached at the free end (see Figure 2.1

below).

3



Figure 2.1

We assume that the material behavior of the beam is that of an idealized Voigt-Kelvin solid with

modulus, of elasticity E and coefficient of viscosity CD (see [30 ]). We assume further that E, CD

and the cross sectional moment of inertia I of the beam are in general spatially varying. We take the

mass properties of the tip body to be mass m and moment of inertia J about the center of mass 0

which is assumed to be located at a distance c from the tip of the beam directed along the beam's tip

tangent (see Figure 2.2 below).

Figure 2.2
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We note that there is no essential loss of generality in assuming that the mass center of the tip body

is not offset from the tip tangent of the beam. We refer the interested reader to [31] where the

more general situation is treated. Also, the problem with non-zero mass center offset can be

transformed into a problem of the general form of the one which will be considered here. See [32]

for details.

Letting u = u(tx) denote the transverse displacement of the beam at position x at time t and
au

assuming only small deformations (u(tx) I < - (tx) I << 1), the Euler-Bernoulli theory
ax

and elementary Newtonian mechanics yield the hybrid system of ordinary and partial differential

equations (see [19], [34])

2 2 2u3
(2.1) p- u t,x) +

2 2 {EIL- + CDI 2- - t,x)]
at ax axat

L u
a-(t,x) + f(tx), x E (0, ). t > 0

ax ax

u 3u -E 2u
(2.2) m-t,2) + mc- (t,2) - (EL- +

2 2at tx ax ax2

alu au
CD~~)t) = a-(t4A) + g(t), t > 0Daxat ax
au 2 a3u a2u f

(2.3) mc-2t t2) + (J + mc ) -2 (t ) + EI- (t,,) +
at2 ' at 2ax' ax

aC 3 u t,2 t) = -ca-au(t,2t) + h(t), t>O0
ax atax'

au
(2.4) u(t,0) = 0, -(Zt,O) = 0, t > 0

ax

5
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(2.5) u(0,x) = ((x), 2u ,x) = V(x), x e [Ot .at

Equation (2.2) and (2.3) are derived from the usual transverse and rotational equilibrium

considerations at the free end. The geometric boundary conditions (2.4) are the zero displacement

and zero slope constraints at the clamped end. The functions f = f(t,x), g = g(t), h = h(t) and

a = a(tx) denote externally applied loads in the form of moments (h) and transversally (f and g) or

axially (;) directed forces exerted on the beam or tip body. (In fact, h(t) = h(t) + cg(t) where h is

an externally applied torque on the tip body). The temporal boundary conditions (2.5) reflect the

initial displacement and velocity distributions which are assumed to be given by the functions 0 and

Nv respectively.

We treat the initial-boundary value problem (2.1) - (2.5) in the form of an abstract second order

evolution equation which we then rewrite as an equivalent first order vector system. The particular

state space formulation we choose forms the basis for the fimte dimensional approximation

schemes we develop in the next section. It also allows us to easily establish existence, uniqueness

and regularity results for solutions to (2.1) - (2.5) using the theory of abstract parabolic systems.

Let H denote the Hilbert space R2 x L2(0, t) with inner product

<('11',,0 1), 012'2'0 2)>H = 1112 + 4142 + <01,02>0

and let V denote the Hilbert space

V = ((i,4,) , H : 0 e H2(0,t), 0(0) = DO(0) = 0, Ti = 0(t), = DO(t))

with inner product

<61, 62>v = <EI(D 201), D202 >0

for Oi = (Oi(t), D0i (M, 0i) F V, i = 1,2. In the above definitions the inner product <','> 0 is
the standard one on L2(0, Z) and D denotes the spatial differentiation operators -E or With H as

ax

the pivot space, we obtain the usual dense embeddings V c H = H' c V'.

We consider the system (2.1) - (2.5) in the form of the abstract second order initial value

6



problem
(2.6) M]1'0utt(t) + 

rjoUt
( t ) + Ko'u(t) = n0(t)u"(t) + T'OWt, t> O

(2.7) (0)=t(o)

in the state ;(t) = (u(t, t),Du(t,t),u(t, .)) e H. The abstract mass, damping and stiffness

operators M, , ro and KO are given formally by

W%0(,t,0) = (ml, + mc, mcnl + (J + mc2)g, p8)

C0(TI, ,O) = (-D(CDI(D20))(t), CDI(D 20)(t),D2 (CDI(D 2 0)))

and

,0(%,t,O) = (-D(EI(D2 ))(t), EI(D2 6)(,2), D2 (EI(D20)))

respectively. For each t > 0, the operator valued function 130 and input or forcing function T"o

take on the values

30(t)(1, ,O) = (-o(t,t)(DO(t)), - ca(t,t)(DO(t)), D(a(t,.)(DO)))

and

T'0(t) = (g(t), h(t), f(t,.)).

The initial conditions i and j are given by

and

The formal definitions given above can be made precise and the existence and uniqueness of

solutions to the initial value problem (2.6), (2.7) can be established if we make the following

assumptions.

A1 The functions p, El and CDI are elements in C[O,t] and there exists a positive constant a for
which p(x) a, EI(x) a, CDI(x) > a, x £ [0, L].

7



A2 The mapping t -4 a(t,.) is an element in L.((0,T); HI(O,t)) for some T > 0.

A3 The mapping t -4 f(t,.) is an element in L2 ((OT); L2(0,t)) and g,h E 1,(0,T).

A4 The function 0 is an element in H2(0, t) with (0) = DO(0) = 0 and V F. L2(0, t) with W(t)

and DV(t) defined.

Under the hypotheses A1 - A4 above, the operator 1 0 is a bounded linear operator from H onto H

andS 0: Dom () c H -4 H and K0: Dom (MO) c H - H are densely defined, nonnegative,

self -adjoint operators defined on Dom(I 0) = (0 E V : CDI(D 2 0) E H2(0,t)) and Dom (Y.%) = 10

F V: EI(D2 0) e H2(Ot)) respectively (see [32]). For each t , (0,T), 130 (t) e Z(V,H) and T0 (t) e

H while $ e V and V e H. It also follows that 130 e L.((0,T); Z(V,H)) and To E L2 ((0,T); H).

We shall call a mapping t -= (t) from [0,T] into H a strong solution to (2.6), (2.7) if

U F C ([0,T]; V) r) Cl((0,T]; V) n' C1 ([0,T]; H) n C2 ((0,TI; H),

i(t) e Dom (0), fit(t) e Dom (%), t E (0,T], and 0 satisfies (2.6) and (2.7) where the time

derivatives are interpreted in a strong (norm) sense in H. We shall call a mapping t -+ 3(t) from

[0,T] into H a weak solution to (2.6), (2.7) if

0 £ C([0,T]; V) n Hl((O,T); V) r Cl([0,T]; H) r) H2((0,T); V')

and it satisfies the initial value problem (2.6), (2.7) with the operators to and KO replaced by their 0

natural extensions to operators in Z(V,V') and the time derivatives are interpreted in a weak or

distributional sense (see [20 1, [27]). A function u = u(tx) will be called a strong (weak) solution

to the initial-boundary value problem (2.1) - (2.5) if the mapping t - 0(t) given by

;(t) = (u(t,),Du(t4, (t)) is a strong (weak) solution to (2.6), (2.7).

Our approximation theory for the estimation problem to be developed below is based upon the

reformulation of the initial value problem (2.6), (2.7) as a first order vector system. This

reformulation is formally equivalent to rewriting the initial-boundary value problem (2.1) - (2.5)

8
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as a first order system in the states D2u (strain) and ut (velocity) (see [31, [311). We note that

since the stiffness operator 2O is nonnegative and self-adjoint it has a unique nonnegative,

1/2
selfadjoint square root Xi : V c H -+ H. It can be written in factored form as

K% = LIL

where L : V c H -+ L2(0,t) is given by

LO= D2 ,

for 6= ((t),DO(t), 0) e V, and L* : Dom (L*4) c L.2 (0, t) -+ H by

Dom-)=([0 L2 (0,t) :EIO .C2 (0,)

(2.8) L*9 = (-D(EIO)(t), 0e(t), D2(EIO)).

If, for E C[O, t] with r(x) > a > 0, x e [0,t], we let 1., denote the Hilbert space L2(0,t)

endowed with the inner product

<01 02>0,,r = <T01,()2> 0
f

then L* given by (2.8) with El replaced by r is the Hilbert space adjoint of L as a mapping from

V c H into L2,,,.

We note that L E Z(V,L2 ,EI) is a Hilbert space isomorphism with

i61v6 0 2 > V 0 =< 2>H 61<LlL 6
2>O.EI

and L 1 : L2(0,) -V given by

Ax x

LI = (J f 0(y)dydx, fO(x)dx, J J 0(y)dydx).

00 0 00

We also have

0 = LCDIL.

NV
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Letting X = L2(0,t) x H with inner product

(2.9) <(0),011 ,1,Xl),(2,( 2,2,X2))> - <01,02>0.0 + <%007l IIXdI) , 012, 2,X2)>H

and Vf = L 2(0,t ) x V with inner product

<,I),(O2,I2)>V = <ot,0>oF1 + <^ 1,2>v

we have the dense imbeddings V c % c 'V,. We consider the initial value problem for

z() = (w(t), ;(t)) E% given by

(2.10) wt(t) = L'(t)

(2.11) 0 vt(t) =" L w(t) - LcDILv(t) + Bo (t)L lw(t) + 0o(t) 0<t ST

(2.12) w(O) = L$, (O) = A

which we rewrite as

(2.13) zt(t) = (t)z(t) + Dr(t), 0 < t < T,

(2.14) z(0) = z0

where

(2.15) CI(t) = r + I (t)

with Ct: ,9 c % -4%, 13E L(0,T); Z(H)), T E L2 ((0,T); %) and z0 e f, given by

CL(Oj) = (Lj, - 7%0 .. ,

= L - oLCD1Li)

for (9, ̂ ) ) = Dom(141 )x Dom(r0),

t3(t)(O,(,ATx)) = (0,%- o Bo(t)L" O),

for (0 ,(T1,,X)) e %,
-1

'(t) = (0,W%0 To(t))

and

=

In formulating the inverse problem, we keep technical details to a minimum by considering only
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the estimation of the beam's spatially varying flexural stiffness EI and viscous damping coefficient

CDT. Extending the finite dimensional approximation methods and corresponding convergence

theory which are developed below so as to be applicable to the identification of other strcural or

input parameters, for example mass properties (of the beam and/or tip body), initial conditions or

loading, is, at least in principle, routine (see [7] [ 12] [14] [16] [ 31]).

Let (.=C[Oj x C[O,t] with norm

(2.16) Iql%= I(q,,q 2)I= Iq,100+ Iq2 14

- sup Iq,(x)I + sup Iq2(x)1.
140.* tIX40. I

We take the admissible parameter space Q to be a compact subset of q (compact with respect to the

metric topology induced by the norm (2.16)). Recalling assumption (i) we assume further that the

set Q has the property that all q = (q ,q2) E Q satisfy qI(x) k a and q2(x) > a , x e [0, t].

We formulate the identification problem as a least-squares fit-to-data over the admissible parameter

space Q. We assume that the structure has undergone a time varying elastic deformation in

response to the initial conditions described by # and 4r and the input loads represented by fg,h and

a. Denoting the observation space by Z, we assume that at times t, i = 1,2,...,v measurements

_ (4) e Z (e.g. displacement, velocity, slope, strain, etc.) were taken from the structure.

We require that Z be a linear space endowed with a norm iI- I Z and let r denote an

appropriately defined continuous mapping from % into Z . For example, suppose that

displacement measurements have been taken at the points xj, j = 1,2,... ,1 along the span of the

beam. We choose Z as Euclidean p-space, R1, and take r to be

r(z) = (O(xI), e(x2),.. .,9(xL))T

where z = (w,v) e 7 and

= (e(t), DO(t),e) = L-1 w E V.

With distributed strain or velocity observations, we would take r(z) = w or r(z) = vrespectively.

We formulate the identification problem as follows

11



(ID) Given (ti ) e Z, i = 1,2,...,v, find q* e Q which minimizes

g~q)- I r(z(ti ; q))-_ (ti) 12

i=1

where for each q = (qlq 2) e Q, z (. ; q) = (w(- ; q), ,(. ; q)) is the solution to the initial value

problem (2.13), (2.14) or (2.10) - (2.12) with El set equal to q1, and CDT set equal to q2.

It is inmmediately clear that the optimization problem given above is inherently infinite

dimensional. The admissible parameter set Q is a subset of a function space and the evaluation (and

therefore minimization) of the least-squares performance index I requires the solution of an infinite

dimensional evolution equation. The introduction of finite dimensional approximations is essential

to the development of practical computational methods. Fundamental to the approach we take here

is a weak, distributional, or variational formulation of the initial value problem (2.13), (2.14). We

derive the weak form and briefly outline existence, uniqueness and regularity results for solutions.

In the usual manner, we extend the operator Ct(t) given by (2.15) to an operator in Z (V,V')

via

(C(t)(v))(v) = a (t)(v,v), v,e V

where the bilinear form a (t)(,.) : Vf x V -4 R is given by
a(t)((01,j1 ),(X2,j2 )) = <EI L £1,02>0 - <E1 01, Lj 2>o - <CDI L 1, L2>o -

(2.17)

AP

cO(t,,) f 0 1(x)dx(DG2(,t)) - <a(t,.) 01(x)dx, x2>° "

0 0

Standard estimates can be used to demonstrate the existence of positive constants k, X and 13 for

which

Ia(tXv l,v 2 )1 ! k IVll IIV2 vi e V, i = 1,2,

and
a(t)(v, v) +X I v I A v I ;, v C , t E[0,T].

Consequently (see [27 ]) the system (2.13), (2.14) interpreted as an initial value problem in V' or

equivalently, written in weak form as

12



(2.18) <zt(t),v>x - a(t)(z(t),v) + < T(t),v>% v e V, t E (0,T]

(2.19) z(O) = zo

admits a unique solution z with z(t) e V, t E (0,1 and

z e L2((0,T);V) n C([0,T]; %) n HI((0,T); V').

If z = (w,v) is the unique solution to (2.18), (2.19) then

(t)= L tw(t), t e [0,T]

is a weak solution to (2.6), (2.7) and it is unique.

Under somewhat stronger hypotheses than those given in A2 and A3 above, the existence of

strong solutions can be established. Indeed, if in addition to Al and A4, we assume

A2  The mapping t -+ a(t,.) is an element in C1([0,T]; H1(0,t)) for some T > 0

A3  The mapping t -+ f(t,.) is an element in C1([0,T]; 1.2(0,t)) and g,h e CI[0,T] (in fact,

Holder continuity will suffice, see [29], [37])

then the family of operators (Ct(t))tC[O,T] given by (2.15) generates a unique evolution system

(U(t,s) : 0:< s < t:5 T) on and z given by

(2.20) z(t) - U(t,0)z 0 + f U(t,s)7(s)ds, 0 5 t!< T,
0

is the unique solution to the inital value problem (2.13), (2.14) and satisfies z(t) £ , t E (0,T]

with z e C[0,T]; %l) r) CI((0,T]; f). Once again, with z - (w, v) now given by (2.20),

u(t)-L'1w(t), t e [0,11, is a strong solution to (2.6), (2.7) and it is unique.
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3. An Abg A Famelm

We turn next to a discussion of a general appmxiamion framework and convergence theory for

the identification problem (ID) formulated above. In the following section we formulate a specific

spline-based scheme to which the general theory developed here applies.

Fundamental to our approach is the construction of a sequence of finite dimensional (with regard

to both the state dynamics and the admissible parameter set) approximating identification problems

each of which, under appropriate hypotheses, can be shown to have a solution that in some sense

(specifically, subsequential convergence) approximates a solution to the original infinite

dimensional estimation problem (ID).

In the discussion to follow, we exhibit the explicit dependence on q = (qlq 2) e q of the U

inner product < .,.>% and the bilinear form a(t)(.,.) given in (2.9) and (2.17) respectively by

using the notation <.,.>q and a(t;qX.,-). For each N1 = 1.2,... and each N2 = 1,2.... let

W N and VN 2 be finite dimensional subspaces of L2(0,,) and V respectively. If, for

N N N N
N - (N,,N 2) we deftne V =W x V , then V is a finite dimensional subspace of both

fl and V!. Let p N : V N denote the projection map of % onto V N given by

(3.1) F (w, V) (P~w ~

where PN is the orthogonal projection of 12(0.2) onto WNI and I'2 is the orthogonal
N,

projection of H onto V , both computed with respect to the standard (unweighted) inner
products on the respective spaces L2(0,t) and H.

The Galerkin equations in IVN corresponding to the system (2.18), (2.19) and q cq are

N N N N N N N
(3.2) <Z (t),v >q =a(t;q)(z ( <,v + < (t),v >q, v Ei f ,0 t T

(3.3) ZN( 0 ) - pNZ
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S 2For each Mi eZ - (1,2,...), i = 1,2, let SMland SM2be finite dimensional subspaes of

1 2 1 2
C[O, and for M = (M 1, M2 ) define %M cx by okM = SMI X SM2" Let 9M and 9M

1 2
denote mappings from C[O,A] onto S M and SM 2 respectively and define IM, a mapping from

q onto qM, by
1 2

9(q) = 9 (q1 ,q2)) = (dM(q1), dM(q2)), q = (q1 , q2) C 0 .

We define a sequence of approximating admissible parameter spaces (QM), M e Z+ x Z+ by

(3.4) QM = 0 M(Q)

and formulate the sequence of approximating identification problems as follows:

(ID!) Given C(ti) e Z,i = 1,2,...,v, find (q ) e Q. which minimizes

MN

I (q) =  Ir(zN(ti ;q)) - C(ti) 12

i-I zI

over QM, where zN(.; q) is the solution to the initial value problem (3.2), (3.3) in VUN.

N I N 1We choose bases N i , (Xi )j-, - and (4Mi, for the finite dimensional

NI N2  1 2 1 2 2
spaces W , V , S and S respectively. Then q. E SM I qM E SM and he solution

1 2
zN( ; qM) to the initial value problem (3.2), (3.3) with q =qM = (qM qM) can be written as

1 i

qM CI aMM''

i+q2 i
qM =  I WM

15
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and

i "(t;EM()

respectively. Moreover, ZN(. ; am) is the solution to the initial value problem in

R given by

(3.5) TN(aM)ZN(t) = AN(t; am) zN(t) + FN(t), t £ (0,1]

(3.6) Z(O)=Z4J

Here the positive definite matrix 7kN(CiM) is of the form

N

N
%I (OM)=

N
0 %2 .

where %fl N(CM) is a KN-square matrix with components

N N[ 7 L a m l i a=U < 0 .M O i , , '
k-i

and It. N is KV-square matrix with entries

[luij = <WLoXV, XY>H"

For each t ! 0 the matrix AN(t ; 0M) is given by AN(t ; aM) = AN(zM) + BN(t) with

16



NL
0 E (am)

(N N( =)

and

0 0
N0

B N(t) =

DN(t) 0

where EN(M) is a KN x KN matrix with components
I 2

[EN( )li= O keN D Xj >0,
k=l1

CN(aM) is a KN -square matrix with components
2

k1
I(aM)]i = E~M <VM4D X, , D X >0

kal

and DN(t) is a KN x KN matrix with components
2 1

[DN(t)]ij = ca(t,A) 0 (x)dxDI ( ) - < a(t,) 0 ON(x)dx, D X>o. I
0 0

The nonhomogeneous term FN(t) is given by Fl(t) = (0, FN(t)) where FN(t) is a KN vector with
2 2 2

entries

17
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[FN(t)]i = <9ro(t), AI>H

The initial data is of the form

where the KIvector and the 14vector 4 are given component-wise by

and

[Z =<^ -~N

respectively, and

G N

GN =

0 2

o2

with GN a KN-square matrix defined by

[Gj = <ON, e> 0 ,

and GN a KN-square matrix with components
2 <ij = <

It is now easily seen that the finite dimensional identification problem (ID ) in fact

involves simply the minimization of a least-squares performance index over a subset of

1 2

RLi + L Furthermore, the evaluation of the functional gN requires only the solution

N Nof the K I + '.2 dimensional, linear, non-autonomous ordinary differential equation (3.5)

18



with initial conditions specified in (3.6). If the existence of solutions to the finite dimensional

optimization problems can be established, it is immediately clear that they can, in principle, be

computed using standard techniques. Conditions which guarantee the existence of solutions to

lxoblem (IDN ) and the fact that they in some sense approximate solutions to the original

infinite dimensional estimation problem (ID) are given in the following theorem.

Theorem 11 Suppose

H1 the mappings OM ar continuous from Q into 0,

H-2 for each q e Q, IM(q) - + q as I M I -4 - with the convergence being uniform in q for q e Q,

H3 the spaces VN and projections VN are such that if (qN) is a sequence in Q with

qN- q (q4 _ q2)eQas INI -+- then zN(t; qN) -4z(t; q) in L2(0,t) x Hforeachte

[0,T] as I N I -+ - where zN(. ; qN) is the solution to the initial value problem (3.2), (3.3)

with q = qN and z(. ; q) is the solution to the initial value problem (2.18), (2.19)

corresponding to El = q, and CDI = q2"

Then, each of the problems (DN) has a solution (qV). Furthermore, the sequence ((qN)*

admits a O-convergent subsequence whose limit q is a point in Q and is a solution to problem

(ID).

In the statement of the theorem, for an element K = (K1,K 2) e Z+ x Z+ we have adopted the

notation I K 1 -4 - to denote K,K 2 -4 . We remark that it is also true that the limit point of

any % -convergent subsequence ((q1 ) of ((qN) with I MI, INI -400 asi, --- is a

solution to problem (ID) as well. Moreover, if problem (ID) has a unique solution, q*, then the

sequence ((qN ) itself converges to q*. It is also important to note that the hypotheses of the

theorem do not require that QM c Q.

We have established results analogous to those given in Theorem 3.1 for inverse problems

involving parabolic and hyperbolic systems (see, for example [ 12], [13], [16]) as well as for

related methods for higher order equations for elastic structures (see [4], [5], [6]). For the flexible

19



structure problems treated here, the essential features of the argument remain, for the most part,

unchanged. We therefore only briefly sketch them below.

Standard continuous dependence results for linear ordinary differential systems, the continuity

assumptions on IM and r (and therefore on gN as well) and the fact that Q is a compact subset of

q are sufficent to conclude that there exists a solution (Q e QM to problem (D1) .
-N

The definition of the space QM (see (3.4)) implies the existence of a qM e Q for which

(Q = M(qM). Since Q is compact, there exists a subsequence (q of QN with

-Nk N
q - q eQ asj,k -+- o. The subsequence {q ) can always be chosen with

NMJ , Nk I - oas j,k o.It follows that

9l (( (q), qeQ4j

.and consequently that

(3.7) (Nq)') <(q)), qeQ.

Assumption H2 above and

N k Nk N k -I(q q* 1 < * : ( q )-qi +1 q+ q*6qj

N k *
imply (q -) - q as j,k--o. Taking the limit as j,k -o in (3.7) above with an

M

application of assumption H3, we find g(q*) ! 9J(q), q , Q, and hence that q* is a solution to

problem (ID).

4. A Schem JIji PoyoilSln

In this section we outline a scheme which uses piecewise polynomial spline functions and show

20



that it satisfies the conditions and hypotheses of Theorem 3.1. We first uteat the discretization of

the admissible parameter set Q.

For each M = (MI, M2) e Z+ x Z+ let Al and A2 denote the uniform partitions of the interval

[O,t] determined by the meshes (0,t/M, 2t/M1, ... ,t} and 0,t/M2 ,2t/M 2,. .. )

respectively. For m = 1,2,... and A a partition of [0, t] let Sp(mA) denote the usual spline

space of functions in C2 m' 2 [0,t] which are polynomials of degree 2m-1 on each subinterval of
i •

A (see [36]). We then define SM = Sp(1, A), i = 1,2. In this case we have dimSM, = = M +
i

1, i = 1,2, with the usual "hat" functions forming a cardinal basis for each of the spaces SM 1 =
i i

1,2. For i = 1,2, let lM: C0,2] -4 SM, be the interpolation operator defined by

a. , j=0,1,2,.....M,

for ye C[Oj]. The theory of interpolatory splines (see [33]) yields the continuous dependence

result
~1ml-4my21o5 Iy,-y2[oi- 1,2

where yI, y2 e C[0,t] and consequently that hypothesis H, of Theorem 3.1 is satisfied. Also,

the approximation result (see [36])
[OMll -71 5I ooWt(V, I / Mi)

where co(y,8) is the usual modulus of continuity of y e C[0, t] with respect to 8, together with the

assumption that Q is a compact subset of q = C[0,t] x C[0,t] and the Arzela-Ascoli theorem

yield that hypothesis H is satisfied as well.

Next we define a state approximation and verify that hypothesis H3 holds. As above, given

N = (N1 , N2) e Z+ x Z+ , we define the uniform partitions ANof the interval [0,2] determined by

the meshes (0,t/Ni, 2t/Ni,...,J ), i = 1,2. We may then choose either

WN 1 =Sp(1, AN)

or

W N Sp(2,AN).

21
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In the first case, once again the "hat" functions may be chosen as a basis with
N1

dim W - K N1 + 1. In the second, the standard cubic B-splines (see [331),

NI N 1 +1N
B, N- = -1 ,corresponding to the partition A form an appropriate finite element basis with

dim W N + 3. In either case, approximation results for interpolatory splines can be used

to obtain

(4.1) IPj0O- 0 0 --+ 0 as N1 -.

for 0 e L2(0, ).

We set

vN2 Sp2A' D(0=
V = (X(2 ), DX(A),X) e H : X e Sp(2,A ), X() ) 01.

Then N2 c V and defining

N2  N2  N2  N2J3i =-Bo -2B1  -2B 1

N 2  N2
ai = B2 i = 2,3, ... N2 + 1

and

N 2  N 2  N 2  N2
2 = (i ()D3 (2),3i 2), i = 1,2, ... ,N 2 + 1,

N2 N2 +1 N N2 -N N2the collection { } forms a basis for V with dim V K2 =N 2 +1. With V

as defined above, it is not difficult to show (using arguments similar to those in [311)

(4.2) PN(T,4,X) - (1,4,X) I H -. 0 as N2 -.
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for (ri,4,X) e H and

(4.3) tLP-L1-+ 0 asN,

for X eV.

So as to avoid obscuring the essential features of our argument with technical details, we verify

hypothesis H3 for the spline-based scheme described above in the case a a 0. The term which

results from axial loading is a bounded perturbation and does not involve the unknown parameters.

Showing that the desired convergence continues to hold in the presence of a non-zero axially

directed acceleration requires only a routine extension of the proof which we give below (see [14]).

Suppose that (qN) is a sequence in Q with qNe.. Q as INI -o. Let zN(wN, )

denote the solution to (3.2), (3.3) with q = qN and let z = (w,v) denote the solution to (2.18),

(2.19) corresponding to 4. We shall require the assumption that z is a strong solution.

In the estimates which follow, we simplify our notation by referring to the inner products

(norms) <.,.> , " ) and <','>- (I'1 -) on % by <.,.> (IN-IN and <,>
qN q N

(I. I) respectively. Also note that with a = 0, we have a (t; q)(.,.) = a (q)(.,.).

Since

IIzN - zl IIzN - FNZII + II(VN - I)zI

where I.I11 denotes the usual (unweighted) product norm on % = L2(0,t) x H, (3.1), (4.1) and

(4.2) imply that we need only to consider the term UzN - plzII. Letting yN(t) = zN(t) - pNz(t),

using (2.18), (2.19), (3.2), (3.3) and the fact that VN c V we find

N N = N N N N

+ a(qN)(yN,vN) - a (qN)(z - IpNz,vN) + a(qN)(z,vN) - a(q)(z,vN)

+ <DvN >N.- <,v N> vN C e N, 0 < t 5 T

(4.4) yN(0) -- 0.
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Choosing vN = yN E f N, we obtain

2 dtYN 22 0

= <(Z- VNZ)t , y + <,- qN wt , W- -w

-<qNL(* - P), wN,- P^w>o + pqWw- P,. -P )>o-

<qNL(" -Prv), L(%1 - PN>o + <(q- q1 )LvA, wN - P>o

- i)w, L(v - P >- < - I)L,L(-P)>

Recalling that Q is a compact subset of ot and that for q (q1 q2)e Q, El q and CDI =q 2 are

assumed to satisfy assumption A1 of Section 2, we find

dilyNi + IL(V'- 2I 0(1(I 2

N~ 2  N W+ N 2_p
+,,y 1 + I q,-q-lwo + IwN- pw 2 +

01 0

L(I-P );1+ IWNpN 12 + -(I,- PN)wl
-£ lo l - +l ±+IL(i-P)I

^ 22

1N- FP12+ 1 + 4 Iw2 0
SL('N - )I o+ I -q1 - I Lv"-Fo

jwNlFlwj2+- I. qN_4112 ]w12+

1 0 4e q, s

where 1o is a positive constant and £ is an arbitrary positive constant. Gathering up like terms

and choosing e < - we obtain
4
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I 1LN 12 + I N - 2  + I IpN IN 12 +

q , , _ ),,12 L V0lq-,ll, I00q2 2 v

where K1 and x2 are positive constants. Integrating both sides of the above inequality from 0 to t

and recalling (4.4) we obtain

t

(4.5) IyN(t)n,2 < + KC2 J IIyN(s)n2ds
0

where

T
f N S12+ N _41 (S12 +I .(I" PN);(S) 12+ I .)WS 1

8:1iJ(II(I-P)z.(s)ll2+ Iq, - lNw(s)lo+ I P s+

0N411^S1+I _ 4121WS 2 +I qN  V1l (s)2d
Iq,- _1 2L21(s)l2+ Iq1 S2.1w(s)lo+ - 2s

so 0 1 s 0 2 0. I}s

Since qN -+ 4 as I NI -- and z - (w.v)T was assumed to be a strong solution, (4.1), (4.2),

(4.3) and (4.5) together with an application of the Gronwall inequality yield the desired result,

,jyN(t),-,+0.

A close inspection of the estimates above reveals that they depend, to a large extent, on the

presence of the viscous damping term <CDI LXI, LX2>0 in the bilinear form a (t)(.,.) given in

(2.17). That is, we require that q2 k cx > 0 for some a > 0 for all q = (qj, q2) E Q. In the

absence of the Voigt-Kelvin damping we can still argue the convergence of zN to z; however, we

must assume that Q is H2-compact. If one is to enforce the compactness constraint on Q when

solving the finite dimensional optimization problems (a desirable implementation feature in many

cases - see [ 10],[ 11 ]), this stronger assumption becomes especially unappealing. On the other

hand, by employing a somewhat different (but closely related) factorization of the stiffness

operator X0 than the one which was used here (one which is formally equivalent to rewriting the

initial-boundary value problem (2.1) - (2.5) as a first order system in the states El D2u and ut as

opposed to D2u and ut) hypothesis H3 of Theorem 3.1 can be verified for the resulting spline-based
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scheme under the present assumptions on Q. Unfortunately this scheme is also difficult to

implement and from a numeral standpoint, has not performed as satisfactorily as the one based on

the formulation given in this paper. The present scheme performed well whether or not damping

was pesent in the equation and hence the assumption that CDI Z o > 0 may be an artifact of our

proof of convergence (see Example 5.3 below).

5. m al Ek I
We present and discuss some of the results which we obtained from our numerical studies of the

scheme that was described in Section 4. All codes were written in FORTRAN, and tested and run

on the IBM 3081 at either Brown University or the University of Southern California. The same

codes were, with only minor modification, run on the Cray I-S at Boeing Computer Services in

Seattle with support made available to us through the National Science Foundation's Super

Computer Initiative program. Examples were bcnchmarked so that the potential benefits of

vectorization to our research program could be accurately and effectively assessed. Our findings

are described below. This information will become especially important to us when we begin to

consider the extension of our general approach to inverse problems involving the vibration of two

dimensional structures, such as flexible plates or platforms, or vibrations of structures in which

nonlinearities play a significant role. The finite dimensional optimization

problems (ID M) were solved using the IMSL routine ZXSSQ, an implementation of the iterative

Levenberg-Marquardt quasi-Newton algorithm. The finite dimensional initial value problems

(3.5), (3.6) were solved in each iteration of the minimization procedure (for the evaluation of the

least-squares performance index I and its gradient with respect to the parameters) using Gear's

method for stiff systems (IMSL routine DGEAR).

Our codes were written to take full advantage of the banded structure of the generalized mass,

stiffness and damping matrices afforded by the use of polynomial B-spline elements. All necessary

inner products were computed using a two point composite Gauss-Legendre quadrature scheme.

All of the examples presented here involve fits based upon displacement measurements obtained
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through simulation. "True" values (which, in the examples below will be denoted with an asterisk,

for example El*, CDI*, etc.) for the unknown parameters were chosen. The resulting initial

boundary value problem (2.1) - (2.5) was then solved using an independent integration scheme.

(We used a seven element, quintic spline based Galerkin method applied directly to the second

order system (2.6), (2.7)). This procedure produced sufficient noise in the data so that the use of a

random noise generator was not required.

In addition to the test example numerical studies we report on here we have successfully used

methods similar to those developed above with experimental data. These results are presented in

detail in (91.

In the examples which follow we took the axial loading to be induced by an acceleration of the

base or root of the structure in the positive x-direction. In this case we have (see [34])

A

CF(tx) = -%(t) I+ p(y)dy)
0

where m is the mass of the tip body, p is the linear mass density of the beam and % is the time

dependent base acceleration.

In Examples 5.1 thru 5.4 below we took t = 1, p(x) - 3 - x for 05 x 1, f(t,x) = exsin 2t,

g(t) = 2et, h(t) =e 2 t, a0(t) = I for0!ts 1.5,a 00(t) = 0 for t > 1.5, m = 1.5, c =. andJ =.52

and considered the estimation of the flexural stiffness coefficient El and/or the viscoelastic damping

coefficient CDI only. In Example 5.1, 5.2 and 5.4, the fits we describe are based upon

observations at times ti = .2i, i = 1,2,.... 5 at locations xj = .5, .75 and 1. In Example 5.3

observations at times ti = .5i, i = 1,2,..., 10at locations xj = .75 and 1 were used. In all of the

examples we discuss here the space W was generated by cubic splines (i.e. as Sp (2,AN

with N, = N2 = N. This corresponds to the approximation of the first and second components of

z with respectively N + 3 and N + I piecewise cubic C2 elements.

The compactness constraints on the spaces QM were not enforced when the finite dimensional

optimization problems (IDN ) were solved. When M, and N2 became large, the inherent

ill-posedness of the inverse problem became apparent as the performance of our schemes

deteriorated. There is evidence strongly suggesting that this situation can be remedied either by
27



iaupuing the componess consamino on the admissible prmnewe space and then solving the

nrinization proble using a constrained optimization procedure (ee 1101, 111) or by

Mregulaing the lean squares performane index (ee (241, [251). We intend to direct our attention

to thew ides in the nem fuure.

In this example we consider the simultaneous estimation of a constant flexural stiffness

coefficient, E* - .15, andi a damping coefficient given by CDI (x) -K 1.5 - tanh (3x - 1.5)),

x e 10,1], with y -. 01. With N =4, M I 1 I and M 2 - 3 and taking start up values (for the least

squams nunamizatio algorithm) EIO - .1 and Crl0(x) - .015. x e [0, 11 we obtained the results

shown in Figure 5.1 below. This particular run required approximately 30 seconds of CPU time

on the IBM 3081.

'a

e0 S .8 55 8i S. SC I

EI CD I

Figure 5.1

We observed that how well the scheme performed depended upon the magnitude of the scaling

factor y. As y was decreased, so too did the "sensitivity" of the least squres performance index to

the damping coefficient. Results similar to those shown in the figures above were obtained with

yf= .005. With y = .001, on the other hand, we were unable to simultaneously identify both of the

unknown parameters. However, again with y - .001, but this time fixing El at the true value, we
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war able io identify CDI alone.
* 1

When we replaced the constant El with die linear function El (x) I1- x and took

y - .the perfomance of the scheme, from a qualitative point of view, remained unchanged.

We again consider the simultaneous estimation of the stiffness and damping coefficients. We

again set El" -. 15 but this time chooe CDI*(x) u.01 (1.5- tanh (20x - 10)), x e 10,lJ. The

identification of this steeper hyperbolic tangent function has, in past test examples, proven to be a

somewhat stiffer challange for our methods (see (51,161). With N = 4, MI = 1, M2 = 3, El° = .1

and CDI0(x) = .015 for 05 x < 1, we obtained the estimates which are plotted along with the true

parameters in Figure 5.2.

SDm OS) I

eml

0,el

EI CoI

Figure 5.2

Also, although the theory was not explicitly treated hem, we note that elements other than linear

splines can be used to discretize the admissible parameter space. Our investigations have included

numerical studies with O-order splines (i.e. piecewise constant functions) and cubic spline

elements. Using two linear elements to approximate El (i.e. M I = I) and nine cubic elements to

discretize CD! we obtained the estimates shown in Figum 5.3. We have obtained an acceptable
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estimat for CIDI with as few as six cubic elements.

In the tests reported on for the present example, residuals were typically in the range 10-6 to

10-8 with CPU times from 25 to 40 seconds.

ILA

G.d

4L"

El CDI

Figure 5.3

Su l 5.3 . . .

In this example we identify only the spatially varying flexural stiffness coefficient

El1(x) = 1.5 - tanh (3x - 1.5), xe [0,1], in a model with no viscoelastic damping (CDI =0). In

Section 4 we remarked that our convergence arguments required either the presence of viscoelastic

damping in the model or that the admissible paranmeter set Q be compact in the stronger H2

topology. The results shown in the figure below suggest that this is only an artifact of our proof

and not a fundamental requirement for the convergence of our approximation (i.e. the absence of

damping does not appear to effect the overall performance of our scheme).

Taking N - 4 and M, equal to I thru 8 we produced the results shown in the series of graphs in

Figure 5.4. The initial estimate or start-up value for El* was taken to be the constant function

EIOx)= 1 for0< x 5 1.

Recalling our earlier remarks, the oscillations which appear in the graphs corresponding to
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M1 -6,7 and 8 due to the inherent ill posedness of the estimation problem are not unexpected.

In fact, as M, or M2 -+ Os, the appearance of the undesirable oscillations in our final estimates

occurred in virtually every test we ran. As we have noted earlier however, preliminary findings in

related studies [101 and [11] regarding the enforcing of the compactness constraints and the

subsequent use of constrained optimization techniques to solve the approximating finite

dimensional identification problems suggest that this difficulty can be overcome. Our

investigations in these directions are continuing.

In addition, the series of tests corresponding to the graphs in Figure 5.4 were benchmarked on

the IBM 3081 and the Cray 1-S. The same estimates were obtained on both machines. However,

we were able to achieve a speed-up factorf, of 7 - 10 on the vector machine. The CPU times are

reported in Table 5.1. In comparing the CPU times on the 3081 for this example with the times

reported for the previous examples it is important to note that the results here were based upon

observations taken over the longer time interval, [0,5], versus the interval [0,1] for examples 5.1

and 5.2.

In Figure 5.5 below we plot the final estimates obtained when we attempted to use our scheme

to simultaneously identify the spatially varying flexural stiffness coefficient

El *(x) = .5 + 4x(l - x), x e [0,1], and viscoelestic damping coefficient,

CvI*(x) = .1 (1.5 - tanh (3x - 1.5)), x e [0,1] . The start-up values for the iterative least squares

minimization routine were taken to be the constant functions EI°(x) = 1 and CDI(x) = .15 for 0 : x

< 1. The graphs in the figure were obtained with N = 4 and a linear spline discretization of the

admissible parameter set Q with M1 = M2 = 3. In all of our tests with this example the minimum

sum of the squares of the residuals was in the range 10-7 - 10-8 with the optimization typically

requiring 50 -70 seconds of CPU time.
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MI BM 3081 CRAY 1-S f
(CPU sec.) (CPU sec.)

1 110 12.5 8.8

2 164.1 20.8 7.9

3 207 23 9

4 249 32 7.8

5 245.5 36 6.8

6 404.4 41.6 9.7

7 346.5 45.6 7.6

8 437.9 49.1 8.9

Table 5.1
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For this example we also tried a cubic-spline based discretization for Q. We considered all

possible combinations, linear splines for El* together with cubic splines for CDI*, cubic splines for

EI* together with linear splines for CDI* etc. Although small values for the sum of the squares of

the residuals were obtained in each instance, our by far best approximation to the true parameters is

the one shown in Figure 5.5 which corresponds to a linear spline based discretization for both

components of the admissible parameter set.

Holding CDI fixed at the true value and using cubic splines to identify El and then holding El

fixed at the true value and using cubic splines to identify CDI* we were able to obtain the estimates

plotted in Figures 5.6 and 5.7 respectively. The estimate for EI* graphed in Figure 5.6 was

obtained with 10 cubic elements while the estimate for CDI* in Figure 5.7 is a linear combination

of 6 cubic elements. An inspection of these figures reveals that while the approximations obtained

are at least marginally acceptable, it is also not surprising that our scheme had some difficulty when

we attemped to identify both parameters simultaneously with a cubic spline-based discretization for

either one or both components of Q.

For this example we also looked at the robustness of our iterative scheme with respect to the

initial values chosen (i.e., El° and CDI°). In Figure 5.8 we plot those points in the CDI° - EI°
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plane which correspond to the start up values we tried. The point marked with" * "corresponds to

the startup values which produced the approximations shown in Figure 5.5. The points marked

with "x "correspond to start-up values which led to essentially the same extimates as those shown

in the figures. The points marked with an" (D "correspond to start-up values for which the

scheme did not converge. The region whose boundary is denoted with dashed lines corresponds to

a "convergence envelope" for the vector valued function ( CDI*, EI*). An analogous study was

carried out for Example 5.2, for which similar robustness results were obtained.
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Figure 5.8

Finally we offer several summary comments on some of our other numerical findings. In

virtually all examples we tried, we found that the estimates yielded by the scheme which we

develop here based on state space coordinates (D2u,ut) and the ones yielded by the scheme based

on a state space formulation in coordinates (u,u) described in [5] and [6] were comparable.

Although in any given example one scheme or the other may produce a somewhat better

approximation to the true parameters, we found it impossible to designate or identify a clear favorite
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among the two methods.

We also ran a series of tests in which we varied the boundary conditions at the free end of the

beam. That is, in addition to the tip body end condition we considered a beam which is clamped at

one end and free at the other with either a point mass (c = J = O) or no mass (m = c = J = 0) rigidly

attached at the tip. We also studied the effect that the presence or absence of external forces and/or

moments at the tip of the beam (i.e. g and h) has on the performance of our scheme. Based upon

these tests, we found it difficult to make definitive statements regarding "best" experimental

procedures for identification of structural parameters with our schemes. However, we are able to

offer several observations. For example, with a point mass at the tip, the schemes performance

was enhanced when an external moment was applied at the tip (i.e. h * 0). On the other hand, the

presence of an externally applied force in the transverse direction (i.e. g * 0) did not appear to have

any effect at all. Also, with no mass at the tip, the scheme was most effective when

g = h = 0. In general we found the scheme to be most dependable with tip body end conditions.

Acknowledgcment: The authors would like to gratefully acknowledge Mr. Chunming Wang of the

Division of Applied Mathematics at Brown University for his assistance in carrying out a

significant portion of the computations (and producing the graphical results) reported on in this

section.

37



[1] M.J. Balas, Trends in large space structure control theory: fondest hopes, wildest dreams,
IEEE Trans. Auto. Control., Vol. AC-27, (June, 1982), pp. 522-535.

[2] H.T. Banks and J.M. Crowley, Parameter estimation for distributed systems arising in
elasticity, Proc. Symposium on Engineering Sciences and Mechanics, (National Cheng
Kung University, December 28-31, 1981) pp. 158-177; LCDS Report No. 81-24, Brown
University, November 1981.

[3] H.T. Banks and J.M. Crowley, Parameter esitmation in Timoshenko beam models, LCDS
Report No. 82-14, Brown University, June 1982; J. Astronaut. Si, 31. (1983), pp.
381-397.

[4] H.T. Banks and J.M. Crowley, Parameter identification in continuum models, LCDS Report
No. 83-1, Brown University, March 1983; J. Astronautical Science, 3 (1985), pp. 85-94.

[5] H.T. Banks and J.M. Crowley, Estimation of material parameters in elastic systems, LCDS
Report No. 84-20, Brown University, June 1984.

[6] H.T. Banks, J.M. Crowley and I.G. Rosen, Methods for the identification of material
parameters in distributed models for flexible structures, ICASE Report No. 84-66, Institute
for Computer Applications in Science and Engineering, NASA Langley Research Center,
Hampton, VA, and Mg. Ap~lic e , 5 (1986).

[7] H.T. Banks and P.L. Daniel (Lamm), Estimation of variable coefficients in parabolic
distributed systems, LCDS Report No. 82-22, Brown University, September 1982; IEEE
T=. A=. Contol AC-3, (1985), pp. 386-398.

[8] H.T. Banks, P.L. Daniel and E.S. Armstrong, A spline-based parameter and state estimation
technique for static models of elastic surfaces, ICASE Report No. 83-25, NASA Langley
Research Center, Hampton, VA, June 1983.

[9] H.T. Banks, S.S. Gates, I.G. Rosen and Y. Wang, The identification of a distributed
parameter model for a flexible structure, ICASE Report No. 86- , Institute for Computer
Applications in Science and Engineering, NASA Langley Reseach Center, Hampton, VA,
August, 1986; SIAM J. Control and Opt , Submitted.

[10] H.T. Banks and D.W. Iles, A Comparison of stability and convergence properties of
techniques for inverse problems, LCDS Report No. 86-3. Brown University, January,
1986.

[11] H.T. Banks and D.W. Iles, On compactness of admissible parameter sets: convergence and
stability in inverse problems for distributed parameter systems, ICASE Report No. 86-38,
Institute for Computer Applications in Science and Engineering, NASA Langley Research
Center, Hampton, VA, June, 1986.

[12] H.T. Banks, P. Kareiva and P.K. Lamm, Estimation techniques for transport equations, in
Mathematics in Biology and Medicine (Proceedings, Bari 1983), V. Capasso, et. al., eds.,
LN in Biomath Vol. 57, Springer, New York, 1985, pp. 428-438.

[13] H.T. Banks and K.A. Murphy, Estimation of coefficients and boundary parameters in
hyperbolic systems, LCDS Report No. 84-5, Brown University, February, 1984; SIAM J.
on Control and Optimization, 24 (1986), pp. 9 2 6- 9 50 .

38



14] H.T. Banks and I.G. Rosen, A Galerkin method for the estimation of parameters in hybrid
systems governing the vibration of flexible beams with tip bodies, CSDL-R-1724, Charles
Stark Draper Laboratory, Cambridge, MA, June 1984.

[15] H.T. Banks and I.G. Rosen, Approximation techniques for estimation and feedback control
for distributed models of large flexible structures, Proc. NASA/ACC Workshop on
Identification and Control of Flexible Space Structures (June 4-6, 1984, San Diego); ICASE
Report No. 84-26, NASA Langley Research Center, Hampton, VA., June, 1984.

[16] H.T. Banks and I.G. Rosen, Numerical schemes for the estimation of functional parameters
in distributed models for mixing mechanisms in lake and sea sediment cores, LCDS Report
No. 85-27, Brown University, October, 1985; Inverse Problems, to appear.

[17] Bums, J.A. and E.M. Cliff, An approximation technique for the control and identification of
hybrid systems, Proceedings of the Third VPI&SU/AIAA Symposium, on the Dynamics and
Control of Large Flexible Spacecraft, Blacksburg, VA, June 15-17, 1981.

[18] C.C. Chen and C.T. Sun, Transient analysis of large frame structures by simple models,
Proc. Symposium on Engineering Science and Mechanics, (National Cheng Kung Univ.,
Dec. 28-31, 1981), pp. 753-775.

[19] R.W. Clough and J. Penzien, Dynamics of Structures, McGraw-Hill, New York, 1975.

[20] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood
Cliffs, 1964.

[21] R. Gran and M. Rossi, A survey of the large structures control problem, Presented at IEEE
Decision and Control Conference, Ft. Lauderdale, FL, 1979.

[22] P.C. Hughes, Passive dissipation of engergy of large space structures, J. Guidance Contr.,
Vol. 3, (1980), pp. 380-382.

[23] J.N. Juang and C.T. Sun, System identification of large flexible structures by using simple
continuum models, J. Astronautical Sciences, 31, (1983), pp. 77-98.

[24] C. Kravaris and J.H. Seinfeld, Identification of parameters in distributed parameter systems
by regularization, SIAM J. Control and Optimization. 23 (1985), pp. 217-241.

[25] Kravaris, C. and Seinfeld, J.H. "Identification of spatially-varying parameters in distributed
parameter systems by discrete regularization," J. Mathematical Analysis and App1, to appear.

[26] K. Kunisch and E. Graif, Parameter estimation for the Euler-Bernoulli beam, Inst. fur Math.
Bericht 83-26, Techn. Universitat Graz, December 1983; Mat. Aolicada e ComRutacional 4
(1985), pp. 95-124.

[27] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,
Springer-Verlag, New York, 1971.

[28] A.K. Noor and C.M. Anderson, Analysis of beam-like lattices, Comp. Math. Appl. Mech.
Enrg., 20 (1979), pp. 53-70.

[29] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Springer-Verlag, New York, 1983.

39



[301 E.P. Popov, Introduction to Mechanics of Solids, Prentice-Hail, Englewood Cliffs. 1968.

[311 LG. Rosen, A numerical scheme for the identification of hybrid systems describing the
vibration of flexible beams with tip bodies, CSDL-P-1893, Charles Stark Draper Laboratory,
1984; J Math. Anal AppI., 116 (1986), pp. 262-288.

[32] I.G. Rosen, "Spline-based Rayleigh-Ritz methods for the approximation of the natural
modes of vibration for flexible beams with tip bodies," Quaerl of Applid Ma heiati ,
Vol. XLIV, No. 1, (1986), pp. 169 - 185.

[33] M.H. Schultz, SJlleLAnalyi, Prentice-Hall, Englewood Cliffs, 1973.

[341 J. Storch and S. Gates, Transverse vibration and buckling of a cantilevered beam with tip
body under axial acceleration, 1. Sound and Vibration, 2 (1985), pp. 43-52.

[35] C.T. Sun, B.J. Kim, and J.L. Bagdanoff, On the derivation of equivalent simple models for
beam and plate-like structures in dynamic analysis, Proceedings A[AA Snecialists
Confrence, Atlanta, Georgia, April 6-8, 1981, pp. 523-532.

[36] B.K. Swartz and R.S. Varga, Error bounds for spline and L-spline interpolation, I Approx.
Theory 6 (1972), pp. 6-49.

[371 H. Tanabe, Eauations of Evolution, Pitman, London, 1979.

40

~ 
t 

-



II


